« Znanost
objavljeno prije 5 godina i 11 mjeseci
BRAVO

Nova metoda grupiranja podataka razvijena na Ruđeru

Rad je objavljen u jednom od najutjecajnijih znanstvenih časopisa u području računalnih znanosti i umjetne inteligencije 'IEEE Transactions on Cybernetics'

Fundamentalni doprinos problemu
Fundamentalni doprinos problemu (IRB)
Više o

IRB

,

znanost

,

podaci

,

grupiranje podataka

Računalni znanstvenici Instituta Ruđer Bošković razvili su novu metodu grupiranja podataka koju odlikuje poboljšana točnost te je ocijenjena fundamentalnim doprinosom problemu grupiranja podataka.

Znanstvenici Laboratorija za reprezentacije znanja i strojno učenje Zavoda za elektroniku Maria Brbić iIvica Kopriva razvili su novu metodu za grupiranje podataka temeljenih na modelu linearnih potprostora kao generatora odgovarajućih funkcionalnih skupina.

Rad je objavljen u jednom od najutjecajnijih znanstvenih časopisa u području računalnih znanosti i umjetne inteligencije 'IEEE Transactions on Cybernetics', koji se po faktoru odjeka 8.803 svrstava na treće mjesto u tome području.

Razvijena metoda je rezultat istraživanja doktorandice Marije Brbić u okviru istraživačkog projekta Hrvatske zaklade za znanost voditelja Ivice Koprive.

Neke od najčešćih primjena grupiranja podataka u medicini odnose se na segmentaciju slike. Primjerice, kod CT slike skupine predstavljaju organi, kod PET slike skupine su tkiva, kod mikroskopske slike histopatoloških preparata skupine su tkiva i/ili stanice, a kod slike optičke koherentne tomografije oka, primjerice, skupine su slojevi unutar mrežnice, objašnjava se u priopćenju instituta.

- Primjene koje smo ilustrirali u ovom novom radu odnose se na prepoznavanje lica odnosno grupiranje slika lica u skupine koje odgovaraju osobama, zatim prepoznavanje govornika, odnosno grupiranje značajki govora u skupine koje odgovaraju osobama, te prepoznavanje rukom pisanih brojeva, odnosno grupiranje slika u skupine koje odgovaraju znamenkama od 0 do 9. - objašnjava Ivica Kopriva.

Razvijene metode grupiranja podataka kod navedenih primjera temelje se na modelu prema kojem su podaci unutar svake skupine generirani iz pripadajućeg linearnog potprostora.

Temeljem tog modela razvijeni su algoritmi koji daju vrlo kompetitivne rezultate na grupiranju zahtjevnih skupova podataka.

- Ključan element u ovom pristupu je učenje matrice reprezentacije koja je rijetka i ima nizak rang. Umjesto konveksnih mjera ranga i rijetkosti koje se standardno koriste, u radu su predložene mjere koje bolje procjenjuju rang i rijetkost. Te mjere su s jedne strane egzaktne mjere temeljene na L0 i Schatten-0 kvazi normama, a  druge glatka surogat funkcija L0 i Schatten-0 kvazi normi - kaže Maria Brbić.

Uvođenjem tih mjera odgovarajući optimizacijski problemi su postali nekonveksni, što dokaz konvergencije algoritma čini zahtjevnim. Unatoč tim poteškoćama, u radu je dan teorijski dokaz globalne konvergencije navedenog optimizacijskog problema za učenje matrice reprezentacije, kaže se u priopćenju.

- Novi algoritmi su značajno poboljšali točnost u usporedbi s postojećim metodama na svim testiranim primjenama - zaključuje Maria Brbić.

12.01.2019. 15:01:00
    
Novi komentar
nužno
nužno

skrolaj na vrh